|
January 12, 2009
Room Temperature Superconductors?
We normally think of carbon as a high resistance material. The first practical electric light bulbs produced by Edison had carbon filaments. However, there is a new kid on the block based on carbon and it is not a superconductor, but it is close. Some recent research in nanotube properties shows very high current carrying capacities. Relatively early in the research of nanotubes, Thess et al. calculated the resistivity of ropes of metallic SWNTs to be in the order of 1E-4 ohm-cm at 300 K. They did this by measuring the resistivity directly with a four-point technique. One of their values they measured was 0.34E-4 ohm-cm, which they noted would indicate that the ropes were the most highly conductive carbon fibers known, even factoring in their error in measurement. In the same study his measurements of the conductivity, Frank et al. was able to have reach a current density in the tube greater than 1E7 A/sq cm. Later, Phaedon Avouris suggested that stable current densities of nanotubes could be pushed as high as 1E13 A/cm2.A SWNT is a Single Walled Nano Tubes. So how does that compare to copper? For household wiring typical current density is 500A/sq cm and ultimate current density is maybe 10X that with the wires near the melting point or beyond. In round numbers 1E4 A/sq cm vs 1E7 A/sq cm for carbon nanotubes. In other words 1,000 times the current density. At a weight per unit volume of about 1/4 that of copper. Copper resistivity at room temperature is about 1.7E-4 ohm-cm. So carbon nanotubes can carry about 5X as much current as an equivalent volume of copper for the same losses. If we can get this stuff into mass production - which is likely to take twenty or thirty years - we can rewire the grid we have for 5X times as much power as it handles now or the same power with 1/5th the losses. Not room temperature superconductors, but a definite improvement. H/T IntLibber at Talk Polywell Cross Posted at Power and Control posted by Simon on 01.12.09 at 04:36 PM |
|
January 2009
WORLD-WIDE CALENDAR
Search the Site
E-mail
Classics To Go
Archives
January 2009
December 2008 November 2008 October 2008 September 2008 August 2008 July 2008 June 2008 May 2008 April 2008 March 2008 February 2008 January 2008 December 2007 November 2007 October 2007 September 2007 August 2007 July 2007 June 2007 May 2007 April 2007 March 2007 February 2007 January 2007 December 2006 November 2006 October 2006 September 2006 August 2006 July 2006 June 2006 May 2006 April 2006 March 2006 February 2006 January 2006 December 2005 November 2005 October 2005 September 2005 August 2005 July 2005 June 2005 May 2005 April 2005 March 2005 February 2005 January 2005 December 2004 November 2004 October 2004 September 2004 August 2004 July 2004 June 2004 May 2004 April 2004 March 2004 February 2004 January 2004 December 2003 November 2003 October 2003 September 2003 August 2003 July 2003 June 2003 May 2003 May 2002 AB 1634 MBAPBSAAGOP Skepticism See more archives here Old (Blogspot) archives
Recent Entries
The Road To Serfdom
Defeating The War On Terror Good Journalism A Certain Lack Of Solidarity Hamas Is Breaking A Big Motor For The Electric Navy Equal holes for all? Cooling The Planet Holocaust Denier Added To List They Kidnap Americans Don't They?
Links
Site Credits
|
|
Besides its electrical advantages over copper, it also has a strength to weight ratio, along its axial direction (i.e. lengthwise), much superior to steel .
Sadly, they are incredibly difficult to manufacture.